Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Viruses ; 14(10)2022 09 30.
Article in English | MEDLINE | ID: covidwho-2066551

ABSTRACT

Molecular therapies exploiting mRNA vectors embody enormous potential, as evidenced by the utility of this technology for the context of the COVID-19 pandemic. Nonetheless, broad implementation of these promising strategies has been restricted by the limited repertoires of delivery vehicles capable of mRNA transport. On this basis, we explored a strategy based on exploiting the well characterized entry biology of adenovirus. To this end, we studied an adenovirus-polylysine (AdpL) that embodied "piggyback" transport of the mRNA on the capsid exterior of adenovirus. We hypothesized that the efficient steps of Ad binding, receptor-mediated entry, and capsid-mediated endosome escape could provide an effective pathway for transport of mRNA to the cellular cytosol for transgene expression. Our studies confirmed that AdpL could mediate effective gene transfer of mRNA vectors in vitro and in vivo. Facets of this method may offer key utilities to actualize the promise of mRNA-based therapeutics.


Subject(s)
Adenoviridae Infections , COVID-19 , Humans , Adenoviridae/genetics , Genetic Vectors/genetics , Gene Transfer Techniques , Polylysine , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pandemics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Biology
2.
J Biochem ; 172(4): 205-216, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-1985079

ABSTRACT

Saliva contributes to the innate immune system, which suggests that it can prevent SARS-CoV-2 entry. We studied the ability of healthy salivary proteins to bind to angiotensin-converting enzyme 2 (ACE2) using biolayer interferometry and pull-down assays. Their effects on binding between the receptor-binding domain of the SARS-CoV-2 spike protein S1 (S1) and ACE2 were determined using an enzyme-linked immunosorbent assay. Saliva bound to ACE2 and disrupted the binding of S1 to ACE2 and four ACE2-binding salivary proteins were identified, including cationic histone H2A and neutrophil elastase, which inhibited the S1-ACE2 interaction. Calf thymus histone (ct-histone) also inhibited binding as effectively as histone H2A. The results of a cell-based infection assay indicated that ct-histone suppressed SARS-CoV-2 pseudoviral invasion into ACE2-expressing host cells. Manufactured polypeptides, such as ε-poly-L-lysine, also disrupted S1-ACE2 binding, indicating the importance of the cationic properties of salivary proteins in ACE2 binding. Overall, we demonstrated that positively charged salivary proteins are a barrier against SARS-CoV-2 entry by cloaking the negatively charged surface of ACE2 and provided a view that the cationic polypeptides represent a preventative and therapeutic treatment against COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Histones/metabolism , Humans , Leukocyte Elastase/metabolism , Peptidyl-Dipeptidase A/metabolism , Polylysine/metabolism , Protein Binding , SARS-CoV-2 , Salivary Proteins and Peptides/metabolism , Salivary Proteins and Peptides/pharmacology , Spike Glycoprotein, Coronavirus
3.
Sci Rep ; 12(1): 10210, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1960487

ABSTRACT

Astodrimer sodium is a dendrimer molecule with antiviral and virucidal activity against SARS-CoV-2 and other respiratory viruses in vitro, and has previously been shown to be safe and well tolerated, and not systemically absorbed, when applied to the vaginal mucosa. To investigate its potential utility as a topical antiviral, astodrimer sodium has been reformulated for application to the nasal mucosa to help reduce viral load before or after exposure to respiratory infection. The current investigation assessed the safety, tolerability and absorption of astodrimer sodium 1% antiviral nasal spray. This was a single-centre, double-blinded, randomized, placebo-controlled, exploratory clinical investigation. Forty healthy volunteers aged 18 to 65 years with no clinically significant nasal cavity examination findings were randomized 3:1 to astodrimer sodium nasal spray (N = 30) or placebo (N = 10) at an Australian clinical trials facility. An initial cohort of participants (N = 12 astodrimer, N = 4 placebo) received a single application (one spray per nostril) to assess any acute effects, followed by a washout period, before self-administering the spray four times daily for 14 days to represent an intensive application schedule. Extent of absorption of astodrimer sodium via the nasal mucosa was also assessed in this cohort. A second cohort of participants (N = 18 astodrimer, N = 6 placebo) self-administered the spray four times daily for 14 days. The primary endpoint was safety, measured by frequency and severity of treatment emergent adverse events (TEAEs), including clinically significant nasal cavity examination findings, in the safety population (all participants randomized who administered any spray). Participants were randomized between 6 January 2021 and 29 March 2021. TEAEs occurred in 8/10 (80%) participants in the placebo arm and 19/30 (63.3%) participants in the astodrimer sodium arm; all were of mild intensity. TEAEs considered potentially related to study product occurred in 5/10 (50%) participants receiving placebo and 10/30 (33.3%) of participants receiving astodrimer sodium. No participants experienced serious AEs, or TEAEs leading to withdrawal from the study. No systemic absorption of astodrimer sodium via the nasal mucosa was detected. Astodrimer sodium nasal spray was well tolerated and is a promising innovation warranting further investigation for nasal administration to potentially reduce infection and spread of community acquired respiratory virus infections.Trial Registration: ACTRN12620001371987, first registered 22-12-2020 (Australia New Zealand Clinical Trials Registry, https://anzctr.org.au/ ).


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Antiviral Agents/adverse effects , Australia , Dendrimers , Double-Blind Method , Female , Humans , Nasal Sprays , Polylysine , SARS-CoV-2 , Sodium , Treatment Outcome
4.
Anal Chem ; 94(3): 1626-1636, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1621191

ABSTRACT

(Mi)RNAs are important biomarkers for cancers diagnosis and pandemic diseases, which require fast, ultrasensitive, and economical detection strategies to quantitatively detect exact (mi)RNAs expression levels. The novel coronavirus disease (SARS-CoV-2) has been breaking out globally, and RNA detection is the most effective way to identify the SARS-CoV-2 virus. Here, we developed an ultrasensitive poly-l-lysine (PLL)-functionalized graphene field-effect transistor (PGFET) biosensor for breast cancer miRNAs and viral RNA detection. PLL is functionalized on the channel surface of GFET to immobilize DNA probes by the electrostatic force. The results show that PGFET biosensors can achieve a (mi)RNA detection range of five orders with a detection limit of 1 fM and an entire detection time within 20 min using 2 µL of human serum and throat swab samples, which exhibits more than 113% enhancement in terms of sensitivity compared to that of GFET biosensors. The performance enhancement mechanisms of PGFET biosensors were comprehensively studied based on an electrical biosensor theoretical model and experimental results. In addition, the PGFET biosensor was applied for the breast cancer miRNA detection in actual serum samples and SARS-CoV-2 RNA detection in throat swab samples, providing a promising approach for rapid cancer diagnosis and virus screening.


Subject(s)
Biosensing Techniques , Breast Neoplasms , COVID-19 , Graphite , MicroRNAs , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , COVID-19/diagnosis , Female , Humans , Polylysine , RNA, Viral/genetics , SARS-CoV-2
5.
Nanoscale ; 13(39): 16465-16476, 2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1434162

ABSTRACT

The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from L-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by L-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/pharmacology , Humans , Pandemics , Polylysine , SARS-CoV-2
6.
Viruses ; 13(8)2021 08 20.
Article in English | MEDLINE | ID: covidwho-1367923

ABSTRACT

Strategies to combat COVID-19 require multiple ways to protect vulnerable people from infection. SARS-CoV-2 is an airborne pathogen and the nasal cavity is a primary target of infection. The K18-hACE2 mouse model was used to investigate the anti-SARS-CoV-2 efficacy of astodrimer sodium formulated in a mucoadhesive nasal spray. Animals received astodrimer sodium 1% nasal spray or PBS intranasally, or intranasally and intratracheally, for 7 days, and they were infected intranasally with SARS-CoV-2 after the first product administration on Day 0. Another group was infected intranasally with SARS-CoV-2 that had been pre-incubated with astodrimer sodium 1% nasal spray or PBS for 60 min before the neutralisation of test product activity. Astodrimer sodium 1% significantly reduced the viral genome copies (>99.9%) and the infectious virus (~95%) in the lung and trachea vs. PBS. The pre-incubation of SARS-CoV-2 with astodrimer sodium 1% resulted in a significant reduction in the viral genome copies (>99.9%) and the infectious virus (>99%) in the lung and trachea, and the infectious virus was not detected in the brain or liver. Astodrimer sodium 1% resulted in a significant reduction of viral genome copies in nasal secretions vs. PBS on Day 7 post-infection. A reduction in the viral shedding from the nasal cavity may result in lower virus transmission rates. Viraemia was low or undetectable in animals treated with astodrimer sodium 1% or infected with treated virus, correlating with the lack of detectable viral replication in the liver. Similarly, low virus replication in the nasal cavity after treatment with astodrimer sodium 1% potentially protected the brain from infection. Astodrimer sodium 1% significantly reduced the pro-inflammatory cytokines IL-6, IL-1α, IL-1ß, TNFα and TGFß and the chemokine MCP-1 in the serum, lung and trachea vs. PBS. Astodrimer sodium 1% nasal spray blocked or reduced SARS-CoV-2 replication and its sequelae in K18-hACE2 mice. These data indicate a potential role for the product in preventing SARS-CoV-2 infection or for reducing the severity of COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Dendrimers/administration & dosage , Nasal Cavity/virology , Nasal Sprays , Polylysine/administration & dosage , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/therapeutic use , Brain/virology , COVID-19/prevention & control , COVID-19/virology , Dendrimers/therapeutic use , Disease Models, Animal , Female , Liver/virology , Male , Mice , Mice, Transgenic , Polylysine/therapeutic use , Respiratory System/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Viral Load/drug effects , Viremia , Virus Replication/drug effects
7.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1304670

ABSTRACT

Silk fibroin (SF) has attracted much attention due to its high, tunable mechanical strength and excellent biocompatibility. Imparting the ability to respond to external stimuli can further enhance its scope of application. In order to imbue stimuli-responsive behavior in silk fibroin, we propose a new conjugated material, namely cationic SF (CSF) obtained by chemical modification of silk fibroin with ε-Poly-(L-lysine) (ε-PLL). This pH-responsive CSF hydrogel was prepared by enzymatic crosslinking using horseradish peroxidase and H2O2. Zeta potential measurements and SDS-PAGE gel electrophoresis show successful synthesis, with an increase in isoelectric point from 4.1 to 8.6. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) results show that the modification does not affect the crystalline structure of SF. Most importantly, the synthesized CSF hydrogel has an excellent pH response. At 10 wt.% ε-PLL, a significant change in swelling with pH is observed. We further demonstrate that the hydrogel can be glucose-responsive by the addition of glucose oxidase (GOx). At high glucose concentration (400 mg/dL), the swelling of CSF/GOx hydrogel is as high as 345 ± 16%, while swelling in 200 mg/dL, 100 mg/dL and 0 mg/dL glucose solutions is 237 ± 12%, 163 ± 12% and 98 ± 15%, respectively. This shows the responsive swelling of CSF/GOx hydrogels to glucose, thus providing sufficient conditions for rapid drug release. Together with the versatility and biological properties of fibroin, such stimuli-responsive silk hydrogels have great potential in intelligent drug delivery, as soft matter substrates for enzymatic reactions and in other biomedical applications.


Subject(s)
Drug Delivery Systems/methods , Fibroins/chemistry , Glucose/metabolism , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Drug Liberation , Fibroins/metabolism , Glucose/chemistry , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Polylysine/chemistry , Silk/chemistry , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction
8.
ChemMedChem ; 16(15): 2345-2353, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1248684

ABSTRACT

The C-type lectin receptor DC-SIGN mediates interactions with envelope glycoproteins of many viruses such as SARS-CoV-2, ebola, and HIV and contributes to virus internalization and dissemination. In the context of the recent SARS-CoV-2 pandemic, involvement of DC-SIGN has been linked to severe cases of COVID-19. Inhibition of the interaction between DC-SIGN and viral glycoproteins has the potential to generate broad spectrum antiviral agents. Here, we demonstrate that mannose-functionalized poly-l-lysine glycoconjugates efficiently inhibit the attachment of viral glycoproteins to DC-SIGN-presenting cells with picomolar affinity. Treatment of these cells leads to prolonged receptor internalization and inhibition of virus binding for up to 6 h. Furthermore, the polymers are fully bio-compatible and readily cleared by target cells. The thermodynamic analysis of the multivalent interactions reveals enhanced enthalpy-driven affinities and promising perspectives for the future development of multivalent therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Cell Adhesion Molecules/antagonists & inhibitors , Glycoconjugates/pharmacology , Lectins, C-Type/antagonists & inhibitors , Receptors, Cell Surface/antagonists & inhibitors , Virus Attachment/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Cell Adhesion Molecules/metabolism , Glycoconjugates/chemical synthesis , Glycoconjugates/metabolism , Humans , Lectins, C-Type/metabolism , Mannose/analogs & derivatives , Mannose/metabolism , Mannose/pharmacology , Microbial Sensitivity Tests , Polylysine/analogs & derivatives , Polylysine/metabolism , Polylysine/pharmacology , Protein Binding/drug effects , Receptors, Cell Surface/metabolism , SARS-CoV-2/drug effects , THP-1 Cells , Thermodynamics , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/metabolism
9.
Antiviral Res ; 191: 105089, 2021 07.
Article in English | MEDLINE | ID: covidwho-1230350

ABSTRACT

An effective response to the ongoing coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will involve a range of complementary preventive modalities. The current studies were conducted to evaluate the in vitro SARS-CoV-2 antiviral and virucidal (irreversible) activity of astodrimer sodium, a dendrimer with broad spectrum antimicrobial activity, including against enveloped viruses in in vitro and in vivo models, that is marketed for antiviral and antibacterial applications. We report that astodrimer sodium inhibits replication of SARS-CoV-2 in Vero E6 and Calu-3 cells, with 50% effective concentrations (EC50) for i) reducing virus-induced cytopathic effect of 0.002-0.012 mg/mL in Vero E6 cells, and ii) infectious virus release by plaque assay of 0.019-0.032 mg/mL in Vero E6 cells and 0.030-0.037 mg/mL in Calu-3 cells. The selectivity index (SI) in these assays was as high as 2197. Astodrimer sodium was also virucidal, irreversibly reducing SARS-CoV-2 infectivity by >99.9% (>3 log10) within 1 min of exposure, and up to >99.999% (>5 log10) shown at astodrimer sodium concentrations of 10-30 mg/mL in Vero E6 and Calu-3 cell lines. Astodrimer sodium also inhibited infection in a primary human airway epithelial cell line. The data were similar for all investigations and were consistent with the potent antiviral and virucidal activity of astodrimer sodium being due to irreversible inhibition of virus-host cell interactions, as previously demonstrated for other viruses. Further studies will confirm if astodrimer sodium binds to SARS-CoV-2 spike protein and physically blocks initial attachment of the virus to the host cell. Given the in vitro effectiveness and significantly high SI, astodrimer sodium warrants further investigation for potential as a topically administered agent for SARS-CoV-2 therapeutic applications.


Subject(s)
Antiviral Agents/pharmacology , Dendrimers/pharmacology , Polylysine/pharmacology , SARS-CoV-2/drug effects , Animals , Cell Line , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Vero Cells
10.
Drug Deliv ; 27(1): 1741-1749, 2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-1045942

ABSTRACT

A novel ß-cyclodextrin pendant polymer (ε-PL-CD), composed of poly(ε-lysine) (ε-PL) main chain and glycine-ß-cyclodextrin (Gly-CD) side chains, was prepared by a simple two-step procedure. The ε-PL-CD was investigated as a drug carrier of hydrophobic drug scutellarin (SCU). The characterization and complexation mode of the SCU:ε-PL-CD were researched in both solution and solid state by means of photoluminescence spectroscopy, 1H and 2D NMR, X-Ray powder diffraction (XRPD), thermal gravimetric analysis, Particle size and Zeta potential. The solubility test indicated that the solubilizing ability of SCU:ε-PL-CD was significantly improved compared with SCU:ß-CD and free SCU. Besides, in vitro cell experiment, it was found that SCU:ε-PL-CD has a strong inhibitory effect on the growth and invasion of tumor cells. The present study provides useful information for ε-PL-CD as a drug carrier material.


Subject(s)
Apigenin/administration & dosage , Cellulose/chemistry , Cyclodextrins/chemistry , Drug Carriers/chemistry , Glucuronates/administration & dosage , Apigenin/chemistry , Apigenin/pharmacology , Crystallography, X-Ray , Drug Delivery Systems , Glucuronates/chemistry , Glucuronates/pharmacology , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Nanoparticles , Particle Size , Polylysine/chemistry , Solubility
11.
Minerva Med ; 112(1): 144-152, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-890934

ABSTRACT

The world is now entering its 9th month of combat against a pandemic of deadly pneumonia. Started out from China in December 2019, the disease has been declared as caused by infection with a so far unknown RNA Coronavirus of the respiratory family, then named severe acute respiratory syndrome coronavirus SARS-CoV-2. In the absence of a vaccine, and with scientists still struggling for an effective therapy, COVID-19 (the SARS-dependent syndrome) carries up to now, a death toll of more than 590,000 (July 18,2020) undermining jobs and finance of contemporary society in all continents. Social distancing, the only measure hitherto shown to restrain virus spread, has been progressively loosened from May 2020 in some countries, leaving us in the fear of repeat attacks from the unchecked virus. We discuss the problem and propose to tentatively boost the antivirus cell machinery by using lab-made viral mimics to engage cell receptors.


Subject(s)
COVID-19/therapy , SARS-CoV-2 , COVID-19/complications , COVID-19/epidemiology , Carboxymethylcellulose Sodium/analogs & derivatives , Carboxymethylcellulose Sodium/therapeutic use , Cytokine Release Syndrome/etiology , Humans , Immunization, Passive , Interferon Inducers/therapeutic use , Mucocutaneous Lymph Node Syndrome/etiology , Physical Distancing , Poly I-C/therapeutic use , Polylysine/analogs & derivatives , Polylysine/therapeutic use , Practice Guidelines as Topic , RNA, Double-Stranded/drug effects , RNA, Viral/drug effects , Recurrence , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Secondary Prevention , COVID-19 Drug Treatment , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL